Scoping Review of Interventional Studies in Chronic Disease for Native Hawaiian, Pacific Islander, and Filipino Populations in the United States

Munirih R. Taafaki MS; Deborah Taira ScD; Kathryn L. Braun DrPH

Abstract

Native Hawaiians (NHs), Pacific Islanders (PIs), and Filipinos experience health disparities in the United States (US) and need interventions that work for them. The purpose of this paper is to present a review of interventions designed to address chronic disease in Native Hawaiian, Pacific Islander, and Filipino populations in the US that were tested for clinical impact through a randomized controlled trial (RCT). Articles were identified through a search of 4 databases, citation chasing, and colleagues. The 23 included articles reported on 21 interventions addressing 4 chronic conditions—cancer, obesity, cardiovascular disease, and diabetes. All projects were guided by advisory groups, and all interventions were theory-based and tailored to the population, with culturally- and language-appropriate educational materials delivered by same-race individuals in familiar church, club, or home settings. About half were tested through cluster RCT. The majority of the interventions were successful, confirming the value of developing and delivering interventions in partnership with community. Given the growing numbers of NHs, PIs, and Filipinos in the US, more investigational studies are needed to develop and test culturally tailored and grounded interventions that meet the health needs of these populations.

Keywords

Scoping review, randomized controlled trial, intervention, indigenous, Native Hawaiian, Pacific Islander, Filipino, chronic disease, health disparities

Abbreviations

CVD = cardiovascular disease
DPP = Diabetes Prevention Program
DSME = diabetes self-management education
HbA1c = hemoglobin A1c
NH = Native Hawaiian
RCT = randomized controlled trial
PI = Pacific Islander
PLP = Pili Lifestyle Program
PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analysis extension of Scoping Reviews

Introduction

In the United States (US), Native Hawaiian (NH), Pacific Islander (PI), and Filipino individuals experience disproportionately high rates of cardiovascular disease (CVD), cancer, diabetes, and obesity in comparison with other racial groups. Innovative and tailored interventions are needed for these populations, as mainstream educational messaging and programs may not be accessible or acceptable to these populations, depleting them of standard and cutting-edge therapies. Numerous studies have examined health disparities in chronic diseases among NH, PI, and Filipino populations; however, it is unclear how many interventional studies, employing randomized controlled trial (RCT) designs, have documented evidence of their effectiveness in managing chronic disease. The purpose of this study was to conduct a scoping review of interventions designed to improve management of chronic disease in NH, PI, and Filipino individuals. The review included only interventions tested through RCT, as this is the gold standard for examining intervention impact.

This work builds on 2 other reviews. The review by McLean et al7 included 10 studies describing culturally grounded or adapted interventions for NH individuals. Findings supported the effectiveness of tailored interventions, and also suggested an increase over time in published interventional studies focused on NH individuals. Another relevant review, by Domingo et al,8 reviewed CVD interventions developed for Filipino individuals in the US and identified key tailoring strategies associated with intervention effectiveness. The current scoping review was conducted to identify effective chronic disease interventions for NH, PI, and Filipino populations to encourage widespread implementation of “what works” and to identify gaps in the research literature.

Methods

Search Strategy

Following guidelines based on the Preferred Reporting Items for Systematic reviews and Meta-Analysis extension of Scoping Reviews (PRISMA-ScR),9 a systematic search was conducted to identify RCTs in chronic disease with a primary focus on NH, PI, and/or Filipino individuals. PubMed, Web of Science, Ovid MEDLINE, and EBSCO Host were searched in June 2022. Search terms included (Native Hawaiian OR Pacific Islander OR Filipino) AND (randomized controlled OR clinical trial OR intervention) AND (evidence based OR promising OR potential) AND United States NOT (Aboriginal OR Maori OR Australia). Additional relevant articles were identified through citation chasing and colleague recommendations.

Inclusion/Exclusion Criteria

Articles were published from 2000 through June 2022 and reported on RCT testing of a chronic disease intervention tai-
lored to NH, PI, and/or Filipino individuals in the US. Studies that included more than 1 race/ethnic group were included if NH, PI, and/or Filipino individuals comprised the majority of the sample or if data were analyzed and reported separately for these groups. Articles were excluded if they: (1) did not report health outcomes; (2) were observational or qualitative studies; (3) were conducted outside of the US; or (4) reported aggregated data with Asian Americans.

Data Extraction and Synthesis

Articles meeting inclusion criteria were read in full, and the following data were extracted: (1) study authors; (2) study location; (3) disease or condition targeted by the intervention; (4) population the intervention was tailored to; (5) tailoring strategies; (6) study design; (7) sample size; (8) intervention and control conditions; and (9) health outcomes. Findings were analyzed separately for interventions addressing cancer, obesity, CVD, and diabetes.

Results

The search strategy yielded 946 articles (Figure 1).9 After 208 duplicates were removed, 738 articles were reviewed by title and abstract, and 678 records were excluded. The remaining 60 articles were read in full, and 37 were excluded because they did not meet inclusion criteria. The remaining 23 records reported on the testing of 21 interventions: 9 articles (8 interventions) relevant to cancer; 5 articles (4 interventions) addressing obesity; 3 articles (3 interventions) focusing on CVD; and 6 articles (6 interventions) concerning diabetes.

Cancer

Nine articles described 8 interventions relevant to cancer prevention and control (Table 1).10-18 Three interventions were designed to increase colorectal cancer screening among Filipino individuals10-13 and 1 among NH individuals,14 2 addressed either breast cancer15 or cervical cancer screening among PI individuals,16 and 1 promoted breast and cervical cancer screening among Filipino individuals.17 A navigation intervention in Hawai‘i was designed to improve screening for 4 different cancers (breast, cervical, prostate, and colorectal) among NH and Filipino individuals.18

All 8 interventions were theory based. The 2 based on Social Support Theory encouraged participants to invite family members and friends to the educational sessions.10,16 Health Belief Theory guided the design of the interventions for Filipino participants reported by Maxwell et al10,13,17 and an intervention for Samoan participants reported by Mishra et al.15 Social cognitive theory guided the interventions tailored for NH and Filipino individuals by Braun et al.14,18 All projects were guided by advisory groups, and all interventions were tailored to the population, with culture- and language-appropriate educational materials delivered by same-race individuals in familiar church, club, or home settings. Intervention duration and follow-up differed widely, from 1 session with a 4-week follow-up15 to 4 sessions over multiple months with a 6-month follow-up.13

The 7 interventions designed to improve screening compliance through health education were tested through cluster RCT.10-16 For the 4 conducted in California, Maxwell et al randomized Filipino-serving organizations to intervention and control conditions in 2005-200911,12 and again in 2011-201413; Mishra et al randomized Samoan churches15; and Tanjasi et al randomized CHamoru and Samoan churches and Tongan clans.16 In Hawai‘i, Braun et al randomized Native Hawaiian civic clubs.14 The Cuaresma et al study, conducted in Hawai‘i, randomized lay health educators to deliver either the intervention or control conditions, and lay educators recruited Filipino participants from their social networks.10 The sample sizes of the cluster RCTs ranged from 2 to 61 clusters and included 121 to 809 individuals.10,14,15 The cancer-screening navigation study in Hawai‘i included 488 NH and Filipino Medicare recipients individually randomized to navigation and control conditions.18

Among the 8 cancer screening studies, 3 limited recruitment to individuals not previously screened.11,13,15 Maxwell et al realized a 30% screening rate among Filipino participants in the intervention group, compared to a 9% screening rate in the control group.11 However, in testing an enhanced version of this intervention, the difference between screening rates at follow-up was not significant. The authors speculated this was due to the similarity of the experimental and control conditions.15 Mishra et al limited recruitment to Samoan women not compliant with mammogram screening and saw a significant improvement only among the subset of women who were aware of mammography at pretest but had not had a mammogram.15 Authors of the other 5 screening interventions noted that their advisory groups preferred they include all club/group/community members regardless of their current screening status.10,14,16-18 Four of these studies saw no or minimal improvements in intervention vs. control group, with authors noting a relatively high levels of self-reported screening compliance at baseline for both groups. The exception was the study testing cancer-screening navigation in Hawai‘i, where significant improvements were seen in breast, cervical, prostate, and colorectal cancer screening.18 Although this study did not restrict recruitment to those non-compliant with screening recommendations, the authors noted relatively low compliance with screening recommendations at baseline. Thus, only 2 of the 8 cancer interventions proved to be effective.

Obesity

Five articles described 4 interventions designed to control obesity by increasing healthy eating and physical activity (Table 2).19-23 One focused on Filipino individuals in San Diego,19 2 on NH and PI individuals in Hawai‘i,20-22 and 1 on children aged 2-8 years in the broader US-Affiliated Pacific.23
All 4 interventions were informed by qualitative research with community members and were multi-level, recognizing that behavior is influenced at the individual, family, organizational, and policy levels. For example, the 2-year Children’s Healthy Living (CHL) intervention included 19 activities to influence interpersonal (training role models, parents, and teachers), community (increasing access to healthy foods and environments for safe play), and organizational and policy (strengthening preschool wellness policies) influences in communities across the Pacific. The 9-month lifestyle program called PILI, or PILI Lifestyle Program (PLP), and its spinoff PILI@Work addressed the importance of family and social networks, physical environments, and organizational policy, as well as individual knowledge and goal-setting, in facilitating behavior change.

The 14-month San Diego intervention employed individual, environmental, and policy strategies to promote healthy eating and physical activity among Filipino individuals.

Two interventions were tested through cluster RCTs. Dirige et al randomized 18 Filipino-serving organizations to a nutrition and physical activity intervention vs. a cancer education control. Novotny et al randomized 27 communities in 5 jurisdictions (Alaska, American Samoa, Commonwealth of the Northern Mariana Islands, Guam, and Hawaii) to intervention, delayed intervention, and temporal conditions. The other 2 interventions were based in organizations, but randomization was at the individual level. In PILI, Kaholokula et al randomized individuals who had completed a 3-month weight-loss
<table>
<thead>
<tr>
<th>Citation</th>
<th>Location and population</th>
<th>Intervention intent</th>
<th>Theory based</th>
<th>Tailored to population</th>
<th>Design</th>
<th>Sample</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braun et al (2005)</td>
<td>NH adults (age 50+) in Hawai‘i</td>
<td>Promoting CRC screening</td>
<td>Yes</td>
<td>Yes</td>
<td>CRCT</td>
<td>E: 69 adults in 8 civic clubs</td>
<td>↔ CRC screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: 52 adults in 8 civic clubs</td>
<td></td>
</tr>
<tr>
<td>Cuaresma et al (2018)</td>
<td>Filipino adults (age 50-75+) in Hawai‘i</td>
<td>Lay health educator (LHE) approach to CRC screening</td>
<td>Yes</td>
<td>Yes</td>
<td>CRCT</td>
<td>E: 158 adults recruited by 11 LHE</td>
<td>↔ CRC screening in bivariate analysis ↑ OR 1.9 (CI=1.0-3.5) in multivariate analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: 176 adults recruited by 15 LHE</td>
<td></td>
</tr>
<tr>
<td>Maxwell et al (2010, 2011)</td>
<td>Filipino adults (age 50 to 70) non-adherent to CRC screening guidelines in California 2004-2009</td>
<td>Promoting CRC screening (CRC1)</td>
<td>Yes</td>
<td>Yes</td>
<td>CRCT</td>
<td>548 adults in 45 orgs in small groups E (A)=202 adults in 36 groups E (B)=183 adults in 7 groups C=163 adults in 30 groups</td>
<td>↑ CRC screening for interventions A & B</td>
</tr>
<tr>
<td>Tanjasiri et al (2019)</td>
<td>PI couples in California</td>
<td>Promoting cervical cancer screening</td>
<td>Yes</td>
<td>Yes</td>
<td>CRCT</td>
<td>E: 249 women and 150 men in 39 groups C: 343 women and 200 men in 42 groups</td>
<td>↔ cervical cancer screening</td>
</tr>
</tbody>
</table>

No significant difference between the intervention and control group in outcome
↑ Significant improvement in the intervention group in outcome
C = Control group
CRC = Colorectal cancer
CRC1 = Colorectal cancer initial effectiveness trial
CRC2 = Colorectal cancer implementation trial
CRCT = Cluster randomized controlled trial
E = Experimental group
LHE = Lay health educator
NH = Native Hawaiian
PI = Pacific Islander
RCT = Randomized controlled trial
program into 6-month weight-loss-maintenance programs, testing a culturally tailored approach vs. a standard behavioral approach.21,22 In PILI@Work, Ing et al randomized individuals in NH-serving organizations that completed a 3-month weight-loss program into a 9-month weight-loss-maintenance program; 1 group received the intervention in person and the other by DVD.20 The sample sizes ranged from 144 adults in Hawai‘i to 8,371 children across the Pacific.21-25

Dirige et al measured consumption of fruit, vegetable, and low-fat foods, physical activity level, and stage of change at baseline and 18 months post baseline. Longitudinal mixed-effects regression models indicated that intervention participants made significant improvements in physical activity, low-fat diet, and stages-of-change outcomes.19 Kaholokula et al found that intervention participants who completed at least half of the prescribed sessions were 5.1-fold more likely than control participants to maintain their initial weight loss. Among those who finished their weight-loss intervention, those in the PLP version and those with greater weight loss prior to randomization were more likely to maintain their weight loss at 9 months.21,22 Ing et al found equal levels of weight-loss maintenance in both experimental arms, ie, those watching the DVDs vs. those receiving the intervention in-person.20 In CHL, intervention communities showed significant improvement compared with control communities in decreasing children’s overweight and obesity prevalence, waist circumference, and acanthosis nigricans prevalence at 2-year follow-up.23 Thus, 4 of the 4 obesity interventions proved to be effective.

Cardiovascular Disease

Three interventions addressed CVD (Table 3).24-26 The Mālama Pu‘uwai (Caring for Heart) intervention compared a 4-module, heart failure education program to standard heart failure education.24 This intervention, informed by interviews with NH and PI individuals, addressed cultural factors, including cultural foods relevant to heart failure and culturally relevant coping strategies. Two articles reported on Ola Hou, a hula-based dance intervention to reduce blood pressure and cardiovascular risk.25,26 This intervention included 3 hours of hypertension education and 12 weeks of hula training; its development was informed by Hawaiian cultural experts and social cognitive theory. One article reported the results of a pilot study24 and the other the results of a larger trial.26

For Mālama Pu‘uwai, 150 patients (62% NH or PI) hospitalized for heart failure or cardiomyopathy at The Queen’s Medical Center were recruited and randomized to the culturally tailored heart-failure program or standard heart failure education.24 For the pilot testing of the hula intervention, 55 NH and PI individuals with hypertension were recruited through community health centers and randomized to Ola Hou or a wait-list control.23 In the larger trial, 263 NH and PI individuals with uncontrolled hypertension from 6 community-based organizations were randomized to hula or an education-only control group.26

The primary outcomes for Mālama Pu‘uwai were differences in cardiac mortality and hospital readmission. Neither were significant; however, risk ratios were less than 1.0 for readmissions and the combined endpoint of deaths and readmissions for the intervention group.24 For the Ola Hou pilot study, the hula intervention group had significantly lower systolic blood pressure at 3 months in both the intention-to-treat and complete case analyses, after adjusting for age, heart disease status, and baseline blood pressure.25 For the larger trial, the intervention group had a significantly greater reduction in systolic and diastolic blood pressure, hypertension stage, and 10-year risk for CVD than the control group.26 Thus, 2 of the 3 CVD interventions proved to be effective.

Diabetes

Six articles reported on the testing of 6 educational interventions for individuals with or at risk of diabetes (Table 4).27-32 Bender et al trialed 2 different educational interventions for Filipino individuals in California. Fit&Trim was an adaptation of the Diabetes Prevention Program (DPP) with a 3-month weight-loss component and a 3-month weight-loss-maintenance component.27 The Filipino Americans Go4Health (PilAm Go4Health) intervention included similar components but incorporated accelerometers and mobile technology.27,28 Inouye et al also focused on Filipino individuals with their 6-month, 8 session, values-based educational invention called Health is Wealth.29 Also in Hawai‘i, the Partners in Care intervention, previously designed and evaluated with African Americans and Latinos, was tailored by the PILI investigators for NH, PI, and Filipino individuals to include 12 sessions delivered by peer educators.30 Ing et al examined the impact of augmenting the Partners in Care intervention with a 3-month social support group.31 A family-focused model of Diabetes Self-Management Education (Family DSME) in Arkansas focused on a Marshallese population and included family motivational interviewing, goal setting, and behavior change.32 All of the interventions were informed by social cognitive theory, and the Bender interventions also were informed by the transtheoretical model for health behavior change.27,28 For the Fit&Trim and PilAm Go4Health interventions, Filipino individuals meeting the DPP criteria for high-risk for diabetes were recruited through flyers, social media, presentations, and snowball sampling.27,28 Health is Wealth included Filipino participants at high-risk for diabetes recruited primarily through Catholic churches in Hawai‘i with large numbers of Filipino congregants.29 Partners in Care recruited NH, PI, and Filipino individuals from community health centers and Hawaiian-serving organizations in Hawai‘i.30 and Ing et al randomized participants who completed the Partners in Care intervention into the social support group or the control condition.31 The Family DSME intervention was offered to Marshallese living in Arkansas with type-2 diabetes.32
Table 2. Obesity Control Interventions for Native Hawaiian, Pacific Islander or Filipinos in the United States

<table>
<thead>
<tr>
<th>Citation</th>
<th>Location</th>
<th>Intervention intent</th>
<th>Theory based</th>
<th>Tailored to population</th>
<th>Design</th>
<th>Sample</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirige et al</td>
<td>Filipino adults in San Diego 2002-2003</td>
<td>Increase healthy eating and physical activity</td>
<td>Yes</td>
<td>Yes</td>
<td>CRCT</td>
<td>E: 337 adults in 9 organizations, C: 336 adults in 9 organizations</td>
<td>↑ physical activity, ↑ low-fat diet, ↑ stage of change for fruit/veg and fat intake, ↔ 5 fruit/veg a day</td>
</tr>
<tr>
<td>Kaholokula et al</td>
<td>NHPI adults in Native Hawaiian-serving organizations in Hawai’i 2007-2008</td>
<td>To increase weight loss and weight loss maintenance</td>
<td>Yes</td>
<td>Yes</td>
<td>RCT</td>
<td>144 completed weight-loss program, then randomized E₁=72 C=72</td>
<td>↑ weight-loss maintenance among those completing at least sessions</td>
</tr>
<tr>
<td>Ing et al</td>
<td>NHPI adults in Native Hawaiian-serving organizations in Hawai’i 2000-2005</td>
<td>To increase weight loss and weight loss maintenance</td>
<td>Yes</td>
<td>Yes</td>
<td>RCT</td>
<td>217 completed weight-loss program, then randomized E₁: 83 E₂: 73</td>
<td>↑ weight-loss maintenance in both experimental arms</td>
</tr>
</tbody>
</table>

↔ = No significant difference between the intervention and control group in outcome
† = Significant improvement in the intervention group in outcome
C = Control group
C₁ = Control Time 1
C₂ = Control Time 2
CRCT = Cluster randomized controlled trial
E = Experimental group
E₁ = Experiment Time 1
E₂ = Experiment Time 2
PI = Pacific Islander
RCT = Randomized controlled trial

Table 3. Cardiovascular Disease Control Interventions for Native Hawaiian, Pacific Islander or Filipinos in the United States

<table>
<thead>
<tr>
<th>Citation</th>
<th>Location</th>
<th>Intervention intent</th>
<th>Theory based</th>
<th>Tailored to population</th>
<th>Design</th>
<th>Sample</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mau et al</td>
<td>NHPI adults with heart failure in Hawai’i</td>
<td>To reduce cardiac-related mortality and readmission</td>
<td>None mentioned</td>
<td>Yes</td>
<td>RCT</td>
<td>E: 75, C: 75</td>
<td>↔ cardiac mortality and hospital readmissions</td>
</tr>
<tr>
<td>Kaholokula et al</td>
<td>NHPI with hypertension in Hawai’i</td>
<td>To reduce hypertension</td>
<td>Yes</td>
<td>Yes</td>
<td>Wait list RCT</td>
<td>E: 27, Waitlist C: 28</td>
<td>↑ blood pressure control & Health-related quality of life</td>
</tr>
<tr>
<td>Kaholokula et al</td>
<td>NHPI with hypertension in Hawai’i</td>
<td>To reduce hypertension</td>
<td>Yes</td>
<td>Yes</td>
<td>Wait list RCT</td>
<td>E: 131, Waitlist C: 132</td>
<td>↑ blood pressure control & 10-year cardiovascular event risk</td>
</tr>
</tbody>
</table>

↔ = No significant difference between the intervention and control group in outcome
† = Significant improvement in the intervention group in outcome
C = Control group
E = Experimental group
NHPI = Native Hawaiian and Pacific Islander
RCT = Randomized controlled trial
Filipino participants in the Fit&Trim intervention realized greater weight reduction compared to the control, and 57% of the intervention group also maintained their weight loss. PilAm Go4Health participants also realized significantly greater weight loss compared with the nonintervention group, and 82% continued to maintain this weight loss at the 3-month follow-up. Filipino participants in the Health is Wealth intervention showed a significant reduction in weight and waist circumference compared to the control group. Sinclair et al found significant baseline-adjusted differences at 3 months between the Partners in Care and control groups in intent-to-treat, A1c, and performing diabetes self-management strategies. However, Ing et al did not find statistically significant differences in longer-term A1c management between the Partners in Care participants randomized to follow-up social support groups compared to the control. For the Family DSME intervention in Arkansas, participants in the intervention group experienced significantly higher reductions in HbA1c compared to the control group in both the intention-to-treat and complete case analyses. Thus, 5 of the 6 diabetes interventions proved to be effective.

Discussion

A scoping review was conducted to obtain a broad overview of literature available on interventional studies in chronic disease among NH, PI, and Filipino individuals in the US. The search yielded 23 articles reporting on findings from RCTs that tested the efficacy of 21 interventions to address cancer, obesity, CVD, or diabetes in these populations. All interventions were theory-based and tailored to the community of interest, and many studies recognized the importance of social and environmental influences on behavior change, especially social connection, and conducted their interventions within families and social organizations, including clubs, churches, and communities.

Effectiveness varied by chronic disease target. For example, all of the obesity interventions were effective, as were 2 of the 3 CVD interventions and 5 of the 6 diabetes interventions. These findings suggest that interventions that are culturally adapted, developed in partnership with the community of interest, and based on theory and culture can be effective in promoting...
healthy behaviors.34-36 However, only 2 of the cancer-related interventions were effective. The other 6, although skillfully designed, were challenged because community partners required that the cancer screening intervention be offered to all club/church members, rather than focusing on those out of compliance with screening guidelines, as well as by the possibility of cross-group contamination.37

There were several limitations to the review. Only 23 RCT in chronic disease in NH, PI, and Filipino individuals were published over 22 years, suggesting the need for more culturally tailored and controlled design interventional research. Some RCT studies may have been missed, as a large number of relevant studies were found through citation chasing and colleagues. The review also excluded studies conducted solely in the US-Affiliated Pacific, studies not focused on chronic disease (eg, psychological interventions), and interventions not tested through RCT.

Conclusion

This review identified effective and promising interventions to improve chronic disease outcomes in NH, PI, and Filipino individuals. These interventions were theory-based and developed and delivered in partnership with community. Given the growing numbers of NH, PI, and Filipino individuals in the US, programmers should consider replicating the most relevant and successful interventions from this review in NH, PI, and Filipino communities. Researchers developing other interventions should test them with RCT designs to expand the evidence base of effective interventions to meet the health needs of these populations.

Conflicts of Interest

None of the authors identify a conflict of interest.

Funding

This review was supported by U54GM138062 (Center for Pacific Innovations, Knowledge and Opportunities), and U54CA143727 (Pacific Island Partnership for Cancer Health Equity) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Acknowledgments

Gratitude and special thanks to Kristen L. Anderson, MS, Director of the Health Sciences Library at the John A. Burns School of Medicine, for assisting in developing the search strategy for this scoping review.

Authors’ Affiliations:
- John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI (MRT, JAB)
- Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI (DT)
- Thompson School of Social Work & Public Health, University of Hawai‘i at Mānoa, Honolulu, HI (KLB)

Corresponding Author:
Munirah R. Taafaki MS, Email: mtaafaki@hawaii.edu

References